Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes air temperature, soil temperature at 5 cm, and soil volumetric water content at 5 cm, and soil CO2 flux at the time of sampling, as well as gap-filled soil CO2 fluxes using non-linear least squares regression. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH.more » « less
-
The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes data from snow depth sensors. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Gallagher, Richard; Futuyma, Douglas J (Ed.)Globally, winter temperatures are rising, and snowpack is shrinking or disappearing entirely. Despite previous research and published literature reviews, it remains unknown whether biomes across the globe will cross important thresholds in winter temperature and precipitation that will lead to significant ecological changes. Here, we combine the widely used Köppen–Geiger climate classification system with worst-case-scenario projected changes in global monthly temperature and precipitation to illustrate how multiple climatic zones across Earth may experience shifting winter conditions by the end of this century. We then examine how these shifts may affect ecosystems within corresponding biomes. Our analysis demonstrates potential widespread losses of extreme cold (<−20°C) in Arctic, boreal, and cool temperate regions. We also show the possible disappearance of freezing temperatures (<0°C) and large decreases in snowfall in warm temperate and dryland areas. We identify important and potentially irreversible ecological changes associated with crossing these winter climate thresholds.more » « lessFree, publicly-accessible full text available November 4, 2025
-
The goal of the New Hampshire Soil Sensor Network is to examine spatial and temporal changes in soil properties and processes as the climate changes. Data collected can also calibrate and validate models that examine how ecosystems may respond to changing climate and land use. To determine how soil processes are affected by climate change and land management, this soil sensor network measures snow depth, air temperature, soil temperature, soil volumetric water content, and soil electrical conductivity, as well as soil CO2 fluxes. This data package includes data from the air temperature, soil temperature, soil volumetric water content, and electrical conductivity sensors. Data were collected at the following sites: BRT = Bartlett Experimental Forest, Bartlett, NH; BDF = Burley-Demmerit Farm, Lee, NH; DCF = Dowst Cate Forest, Deerfield, NH; HUB = Hubbard Brook Experimental Forest, Woodstock, NH; SBM = Saddleback Mountain, Deerfield, NH; THF = Thompson Farm, Durham, NH; and Trout Pond Brook, Strafford, NH.more » « less
-
Climate zones play a significant role in shaping the forest ecosystems located within them by influencing multiple ecological processes, including growth, disturbances, and species interactions. Therefore, delineation of current and future climate zones is essential to establish a framework for understanding and predicting shifts in forest ecosystems. In this study, we developed and applied an efficient approach to delineate regional climate zones in the northeastern United States and maritime Canada, aiming to characterize potential shifts in climate zones and discuss associated changes in forest ecosystems. The approach comprised five steps: climate data dimensionality reduction, sampling scenario design, cluster generation, climate zone delineation, and zone shift prediction. The climate zones in the study area were delineated into four different orders, with increasing subzone resolutions of 3, 9, 15, and 21. Furthermore, projected climate normals under Shared Socioeconomic Pathways 4.5 and 8.5 scenarios were used to predict the shifts in climate zones until 2100. Our findings indicate that climate zones characterized by higher temperatures and lower precipitation are expected to become more prevalent, potentially becoming the dominant climate condition across the entire region. These changes are likely to alter regional forest composition, structure, and productivity. In short, such shifts in climate underscore the significant impact of environmental change on forest ecosystem dynamics and carbon sequestration potential.more » « less
-
Maier, Thomas (Ed.)Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snowpacks become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to <1 month under the warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range northward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies.more » « less
-
Abstract Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.more » « less
An official website of the United States government
